
From: Alperin-Sheriff, Jacob (Fed)
To: Moody, Dustin (Fed); Liu, Yi-Kai (Fed)
Cc: Chen, Lily (Fed)
Subject: Re: Slides for Talk
Date: Thursday, April 20, 2017 3:23:29 PM
Attachments: sample_slides.pdf

 
 

From: "Moody, Dustin (Fed)" <dustin.moody@nist.gov>
Date: Thursday, April 20, 2017 at 10:26 AM
To: "Liu, Yi-Kai (Fed)" <yi-kai.liu@nist.gov>
Cc: "Alperin-Sheriff, Jacob (Fed)" <jacob.alperin-sheriff@nist.gov>
Subject: Re: PQC seminar postponed til next Friday
 
Yes, I'll call you then.  I'll get Jacob to send you the slides as well.

From: Liu, Yi-Kai (Fed)
Sent: Thursday, April 20, 2017 10:13:48 AM
To: Moody, Dustin (Fed)
Subject: Re: PQC seminar postponed til next Friday
 
Awesome, thank you! Can I just call in then? I think the audio is better using the speaker phone, compared to google
hangouts. Or you can call me at UMD, my phone number there is 301-314-1850.

Thanks!

--Yi-Kai
________________________________________
From: Moody, Dustin (Fed)
Sent: Thursday, April 20, 2017 8:24:54 AM
To: Liu, Yi-Kai (Fed)
Subject: Re: PQC seminar postponed til next Friday

Either one is fine with me.  No problem!

________________________________
From: Liu, Yi-Kai (Fed)
Sent: Wednesday, April 19, 2017 5:50:11 PM
To: Moody, Dustin (Fed)
Subject: Re: PQC seminar postponed til next Friday

Hi Dustin,

Is it ok if I join this meeting via phone call or google hangout? I'm sorry to do this again, there's some meeting at
UMD that just got rescheduled to Friday, and it's difficult for me to miss that one. Let me know what is most
convenient on your end?

Thanks, and sorry about this...

--Yi-Kai
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Why is Discrete Gaussian Sampling Necessary?


I For key exchange-it’s not!


I Can replace by centered binomial distribution ψk (New Hope etc).


I Sampleable with 2k uniform bits bi, b
′
i:


Y ←
k∑
i=0


(bi − b′i)


I Close enough for LWE - small number of samples


I For (SIS-based) signatures - large number of samples per instance


I Can’t just approximate
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Discrete Gaussian Distribution


I Discrete Gaussian DZ,σ for
σ = 2


I Each point in Z chosen with
probability proportional to


ρσ(x) = exp(−x2/2)


−8 −6 −4 −2 0 2 4 6 8


0


0.05


0.1


0.15


0.2


I Discrete Gaussians maintain many properties of normal distribution


I Sums of discrete Gaussians are still discrete Gaussians,


σ =
√
σ2x + σ2y


I Actual sampling: ignore the (very unlikely) points outside [−τσ, τσ]
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“Basic” SIS-based Signature Scheme [L’12]


I Public key: uniform A, T := AS for short secret key S


I Cryptographic hash function H hashing input to short vectors


I Sign(µ):


1 Sample y← DZn,σ.


2 Hash c← H(Ay,µ).


3 Apply rejection sampling to z := Sc+ y


4 Output (z, c) as signature.


I Verify((z, c),µ):


1 Verify that z is sufficiently short (under Euclidean norm)


2 Verify that H(Az−Tc,µ) = c


I Key Step: rejection sampling – hides S contribution to signature.
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Rejection Sampling


I Standard general technique (due to von Neumann) to sample f(x)
given access to easily sampleable g(x)


1 Sample Y ← g


2 Accept Y with probability min(f(Y )/(Mg(Y ), 1).


F Need f(x) ≤Mg(x) (except with negligible probability over x)
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Rejection Sampling for Discrete Gaussian Distributions


I For param σ, sample
probabilities must be
proportional to


ρσ(x) = exp(−x2/(2σ2))


1 Sample Y ← [−τσ, τσ] uniformly.


2 Accept with probability ρσ(Y )/ρσ(Z), otherwise resample.


I Problems:


F High rejection rate


F Computing ρσ to high precision is expensive
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Bernoulli Rejection Sampling [DDLL’ 12]


I “Core sampler” of D+
σ2 where σ2 =


√
1/(2 ln(2)).


F ρσ2(x) = 2−x
2


,x ∈ Z
F In DDLL’12, binary-style rejection sampler given access to uniform bits.
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Bernoulli Rejection-Core Sampler


Sampling D+
σ2


Draw random bit b.
if random bit b = 0 then return 0
for i = 1 to ∞ do


Draw random bits b1, . . . , bk for k = 2i− 1
if b1 . . . , bk−1 6= 0 . . . 0 then restart
if bk = 0 then return i


I Why it works: binary expansion of ρσ2({0, . . . , j}) is


ρσ2(0, . . . , j) =


j∑
i=0


2−i
2
= 1.100100001 0 . . . 0︸ ︷︷ ︸


6


1 . . . 0 . . . 0︸ ︷︷ ︸
2(j−1)


1
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Bernoulli Rejection (Full Algorithm)


Sampling D+
kσ2


, k ∈ Z
Sample x← D+


σ2 .
Sample y ← {0, . . . , k − 1}.
Let z ← kx+ y.
Sample b with probability exp(−y(y + 2kx)/(2(kσ2)


2))
if b = 0 then restart.
return z.


I Sampling the exponential distribution can be done efficiently


F Takes time O(log k).


F Needs small lookup table with


ET[i] := exp(−2i/(2(kσ2)2)), i ∈ [0,O(log k)]
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Bernoulli Rejection-Timing Attacks


Sampling D+
σ2


Draw random bit b.
if random bit b = 0 then return 0
for i = 1 to ∞ do


Draw random bits b1, . . . , bk for k = 2i− 1
if b1 . . . , bk−1 6= 0 . . . 0 then restart
if bk = 0 then return i


I Problem-Information Revealed by Timing Attacks!


I When for loop not entered, algorithm always outputs 0


I Algorithm for D+
σ2 is slow in worst case.


I Can mitigate with batching


10 / 19







Bernoulli Rejection-Timing Attacks


Sampling D+
σ2


Draw random bit b.
if random bit b = 0 then return 0
for i = 1 to ∞ do


Draw random bits b1, . . . , bk for k = 2i− 1
if b1 . . . , bk−1 6= 0 . . . 0 then restart
if bk = 0 then return i


I Problem-Information Revealed by Timing Attacks!


I When for loop not entered, algorithm always outputs 0


I Algorithm for D+
σ2 is slow in worst case.


I Can mitigate with batching


10 / 19







Bernoulli Rejection-Timing Attacks


Sampling D+
σ2


Draw random bit b.
if random bit b = 0 then return 0
for i = 1 to ∞ do


Draw random bits b1, . . . , bk for k = 2i− 1
if b1 . . . , bk−1 6= 0 . . . 0 then restart
if bk = 0 then return i


I Problem-Information Revealed by Timing Attacks!


I When for loop not entered, algorithm always outputs 0


I Algorithm for D+
σ2 is slow in worst case.


I Can mitigate with batching


10 / 19







CDT Sampling


I For each y ∈ [−τσ, τσ], compute λ bit precision


py := Pr[x ≤ y | x← Dσ]


I Store in (large) table


I To sample Dσ:


F Sample (sufficient approximation of) uniform r ∈ [0, 1)


F Binary search to find y ∈ [−τσ, τσ] such that r ∈ [py−1, py).


I Can be sped up with additional guide table


I Problems: Table is quite large; infeasible for constrained devices.
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Knuth-Yao Sampling


START
1


I
3


I


I
3


2


I
1


I
3


2


Val Prob (binary)
1 0.10010


2 0.00011


3 0.01011


I Designed to minimize (average) number of bits required to sample


I Theorem: Knuth-Yao requires at most 2 more than entropy of dist.
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Knuth-Yao Sampling (Gaussians) [Dwarakanath/Galbraith]


x σ10(x) Binary expansion of σ10(x)


0 0.01994711 0.00000101000110110100
±1 0.03969525 0.00001010001010010111
±10 0.02419707 0.00000110001100011100
±20 0.00539909 0.00000001011000011101
±30 0.00044318 0.00000000000111010001
±40 0.00001338 0.00000000000000001110


I Need to store table of probabilities, which is large.


I Can cut down by performing Knuth-Yao in “blocks”


1 Partition into disjoint sets with almost equivalent probabilities


2 Pick a set


3 Perform Knuth-Yao within the set


I Knuth-Yao is not constant time!


I Can be mitigated by batching


13 / 19







Knuth-Yao Sampling (Gaussians) [Dwarakanath/Galbraith]


x σ10(x) Binary expansion of σ10(x)


0 0.01994711 0.00000101000110110100
±1 0.03969525 0.00001010001010010111
±10 0.02419707 0.00000110001100011100
±20 0.00539909 0.00000001011000011101
±30 0.00044318 0.00000000000111010001
±40 0.00001338 0.00000000000000001110


I Need to store table of probabilities, which is large.


I Can cut down by performing Knuth-Yao in “blocks”


1 Partition into disjoint sets with almost equivalent probabilities


2 Pick a set


3 Perform Knuth-Yao within the set


I Knuth-Yao is not constant time!


I Can be mitigated by batching


13 / 19







Knuth-Yao Sampling (Gaussians) [Dwarakanath/Galbraith]


x σ10(x) Binary expansion of σ10(x)


0 0.01994711 0.00000101000110110100
±1 0.03969525 0.00001010001010010111
±10 0.02419707 0.00000110001100011100
±20 0.00539909 0.00000001011000011101
±30 0.00044318 0.00000000000111010001
±40 0.00001338 0.00000000000000001110


I Need to store table of probabilities, which is large.


I Can cut down by performing Knuth-Yao in “blocks”


1 Partition into disjoint sets with almost equivalent probabilities


2 Pick a set


3 Perform Knuth-Yao within the set


I Knuth-Yao is not constant time!


I Can be mitigated by batching


13 / 19







Knuth-Yao Sampling (Gaussians) [Dwarakanath/Galbraith]


x σ10(x) Binary expansion of σ10(x)


0 0.01994711 0.00000101000110110100
±1 0.03969525 0.00001010001010010111
±10 0.02419707 0.00000110001100011100
±20 0.00539909 0.00000001011000011101
±30 0.00044318 0.00000000000111010001
±40 0.00001338 0.00000000000000001110


I Need to store table of probabilities, which is large.


I Can cut down by performing Knuth-Yao in “blocks”


1 Partition into disjoint sets with almost equivalent probabilities


2 Pick a set


3 Perform Knuth-Yao within the set


I Knuth-Yao is not constant time!


I Can be mitigated by batching


13 / 19







Knuth-Yao Sampling (Gaussians) [Dwarakanath/Galbraith]


x σ10(x) Binary expansion of σ10(x)


0 0.01994711 0.00000101000110110100
±1 0.03969525 0.00001010001010010111
±10 0.02419707 0.00000110001100011100
±20 0.00539909 0.00000001011000011101
±30 0.00044318 0.00000000000111010001
±40 0.00001338 0.00000000000000001110


I Need to store table of probabilities, which is large.


I Can cut down by performing Knuth-Yao in “blocks”


1 Partition into disjoint sets with almost equivalent probabilities


2 Pick a set


3 Perform Knuth-Yao within the set


I Knuth-Yao is not constant time!


I Can be mitigated by batching


13 / 19







Knuth-Yao Sampling (Gaussians) [Dwarakanath/Galbraith]


x σ10(x) Binary expansion of σ10(x)


0 0.01994711 0.00000101000110110100
±1 0.03969525 0.00001010001010010111
±10 0.02419707 0.00000110001100011100
±20 0.00539909 0.00000001011000011101
±30 0.00044318 0.00000000000111010001
±40 0.00001338 0.00000000000000001110


I Need to store table of probabilities, which is large.


I Can cut down by performing Knuth-Yao in “blocks”


1 Partition into disjoint sets with almost equivalent probabilities


2 Pick a set


3 Perform Knuth-Yao within the set


I Knuth-Yao is not constant time!


I Can be mitigated by batching


13 / 19







Discrete Ziggurat Sampling


1 Partition density function into m
rectangles of equal probability


2 Choose a rectangle unif. at random


3 Choose point x′ ← [0,xi]


1 If x′ ≤ xi−1, accept.


2 Otherwise, do rejection sampling.


I Sampling in discrete case requires some care


F Partitioning can’t be done by “area”, but by probability


I No clear vulnerability to timing attacks.
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Batching


I Technique to make algorithm (e.g. Knuth-Yao) constant time


I Signatures need large (linear) number of Gaussian samples anyway


I Use Hoeffding-type bounds


F Each sample takes on average c random bits, max of n WHP


F All n samples take combined time cn on average


F With overwhelming prob, all n samples take at most cn+ n time.


I Have algorithm run in “time” proportional to cn+ n being used.


I Pitfall: Making sure implementation is constant time is extremely hard
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Walter-Micciancio Sampling


zi = bσi−1/
√
2ηε(Z)c,σ2i = (z2i +max((zi − 1)2, 1))σ2i−1


I New algorithm with constant-time online phase


I Works by recursively combining samples with smaller σs.


I Assumes access to DZ+c,σ0with small σ0 ≥
√
2ηε(Z)


F Authors suggest generating these offline in “idle times”


F Doesn’t seem plausible for constrained devices


F Relies on idle time (frequent queries could eliminate it)
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Walter-Micciancio (Runtime)
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Even Tables Are Vulnerable - To Cache Attacks


I Table access is constant-time. Or is it??


I FLUSH+RELOAD attack uses clflush instruction (on x86-64)


1 Evicts memory block from cache,


2 Lets victim execute


3 Measures time to access same memory block


I Flush, Gauss and Reload uses this on Gaussian sampling in BLISS


I Requires roughly 3000 signatures


I FLUSH+RELOAD must be run on same system as crypto


18 / 19







Even Tables Are Vulnerable - To Cache Attacks


I Table access is constant-time. Or is it??


I FLUSH+RELOAD attack uses clflush instruction (on x86-64)


1 Evicts memory block from cache,


2 Lets victim execute


3 Measures time to access same memory block


I Flush, Gauss and Reload uses this on Gaussian sampling in BLISS


I Requires roughly 3000 signatures


I FLUSH+RELOAD must be run on same system as crypto


18 / 19







Even Tables Are Vulnerable - To Cache Attacks


I Table access is constant-time. Or is it??


I FLUSH+RELOAD attack uses clflush instruction (on x86-64)


1 Evicts memory block from cache,


2 Lets victim execute


3 Measures time to access same memory block


I Flush, Gauss and Reload uses this on Gaussian sampling in BLISS


I Requires roughly 3000 signatures


I FLUSH+RELOAD must be run on same system as crypto


18 / 19







Even Tables Are Vulnerable - To Cache Attacks


I Table access is constant-time. Or is it??


I FLUSH+RELOAD attack uses clflush instruction (on x86-64)


1 Evicts memory block from cache,


2 Lets victim execute


3 Measures time to access same memory block


I Flush, Gauss and Reload uses this on Gaussian sampling in BLISS


I Requires roughly 3000 signatures


I FLUSH+RELOAD must be run on same system as crypto


18 / 19







Even Tables Are Vulnerable - To Cache Attacks


I Table access is constant-time. Or is it??


I FLUSH+RELOAD attack uses clflush instruction (on x86-64)


1 Evicts memory block from cache,


2 Lets victim execute


3 Measures time to access same memory block


I Flush, Gauss and Reload uses this on Gaussian sampling in BLISS


I Requires roughly 3000 signatures


I FLUSH+RELOAD must be run on same system as crypto


18 / 19







Even Tables Are Vulnerable - To Cache Attacks


I Table access is constant-time. Or is it??


I FLUSH+RELOAD attack uses clflush instruction (on x86-64)


1 Evicts memory block from cache,


2 Lets victim execute


3 Measures time to access same memory block


I Flush, Gauss and Reload uses this on Gaussian sampling in BLISS


I Requires roughly 3000 signatures


I FLUSH+RELOAD must be run on same system as crypto


18 / 19







Can We Avoid Discrete Gaussians?


I Seems like it should be easier for SIS-based cryptography


F Unlike LWE, SIS problem is not defined with a noise distribution


F Just need to find short solution


I Discrete Gaussians do give tightest bounds, but how much tighter?


I Would be nice to see concrete implementations without them
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________________________________________
From: pqc-bounces@nist.gov <pqc-bounces@nist.gov> on behalf of Moody, Dustin (Fed)
<dustin.moody@nist.gov>
Sent: Thursday, April 13, 2017 12:25 PM
To: pqc
Subject: [Pqc] PQC seminar postponed til next Friday

Everyone,
       We will postpone our PQC seminar until next Friday, April 21st.  Jacob will speak on “Discrete Gaussian
Sampling-Techniques and Dangers”.  Thanks,

Dustin


